
Contents

1 Sum-Check Protocol [LFKN90] 2
1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Explanation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Significance: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 How it works: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Sum-Check Protocol: Round 1 . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Sum-Check Protocol: Round 2 . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Round ℓ (Final Round) . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 IP=PSPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Double-Efficient Interactive Proof for Counting Triangles . . . . . . . . . . 24
1.7 A Better Doubly-Efficient Interactive Proof for Counting Triangles . . . . 25

1



1 Sum-Check Protocol [LFKN90]

1.1 Definition

Input: Verifier V given oracle access to a ℓ polynomial g over field F
Goal: Compute the quantity:∑

x1∈{0,1}

∑
x2∈{0,1}

...
∑

xℓ∈{0,1}

g(x1, x2, ..., xℓ)

1.2 Explanation:

The Sum-Check protocol is a fundamental technique in interactive proof systems, par-
ticularly in the context of arithmetic circuits and polynomial computations. It allows a
verifier to efficiently check the result of a multi-dimensional summation over a polynomial
f without actually needing to evaluate f at all the possible points in the domain.

• Input: The verifier V has oracle access to the polynomial g This means that V can
query the value of g at any point within the domain without knowing the explicit
representation of g

"oracle access" is a theoretical computer science term that means:

1. Black-box access:

2. You can query input/output pairs

3. You don’t see how it’s computed inside

4. Like a black box with input/output slots

5. Cost still exists:

6. Each query counts as one operation

7. If you query n times, complexity is O(n)

8. Not "free" access

Example in Python:

class Polynomial_Oracle:
def __init__(self):

# Internal representation hidden from user
self._coefficients = [1, 2, 3] # ax² + bx + c

def query(self, x):
# User only sees input/output
# Doesn't know it's a quadratic polynomial
return sum(c * x**i for i, c in

enumerate(self._coefficients))↪→
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# Verifier only gets this oracle access
oracle = Polynomial_Oracle()
result = oracle.query(2) # Can only see input=2, output=17

• Goal: The goal is to compute the sum of f over all possible combinations of
x1, x2, ..., xℓ where each xi can be either 0 or 1.

1.3 Significance:

The Sum-Check protocol is crucial for several reasons:

• Efficiency: It allows the verifier to check the result of a complex summation with
significantly less computational effort than evaluating the polynomial at all points.

• Zero-Knowledge: It can be adapted to provide zero-knowledge proofs, meaning
the verifier can be convinced of the result without learning anything about the
polynomial itself.

Here’s the high-level idea of making Sum-Check zero-knowledge:

1. Main Strategy: Hide the real polynomial f by adding randomness

# Instead of revealing f directly, do:
def masked_polynomial(x):

r = random_polynomial() # mask
return f(x) + r(x) # masked value

2. Key Steps:

3. Prover sends masked values

4. Uses randomization to hide real values

5. Sum still verifies correctly due to:

– Random parts cancel out

– Original sum preserved

3. Verifier learns:

4. Final sum is correct

5. Nothing about specific f values

6. Only sees masked values

Like showing your bank balance is >$1000 without revealing exact amount.

This is just outline; actual protocol has more complex masking techniques.
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1.4 How it works:

The protocol is interactive, involving a prover P who claims to know the value of the
sum. The prover interacts with the verifier in a series of rounds, reducing the size of the
summation by one dimension in each round, until the verifier can finally compute the
final sum.

1.4.1 Sum-Check Protocol: Round 1

Start:

• Prover (P) sends a claimed answer C The protocol must check that:

C =
∑

x1∈{0,1}

∑
x2∈{0,1}

...
∑

xℓ∈{0,1}

f(x1, x2, ..., xℓ)

Round 1:

• Prover (P) sends a univariate polynomial S1(x1) claimed to equal:

H1(x1) =
∑

x2∈{0,1}

∑
x3∈{0,1}

...
∑

xℓ∈{0,1}

f(x1, x2, ..., xℓ)

• Verifier (V) checks that C = S1(0) + S1(1)

• Key Point: If this check passes, it is safe for V to believe that C is the correct
answer as long as V believes that S1 = H1

How to check S1 = H1?

• Verifier’s Approach: The verifier V cannot directly compute H1(x1) (because
it would require knowing f which is unknown to V Instead, V chooses a random
value r1 in the field.

• Verification Step: V checks if S1(r1) equals H1(r1) To do this:

– V can compute S1(r1) from the polynomial S1(x1) sent by the prover P.

– V cannot compute H1(r1) directly (it doesn’t know f

class SumCheckProtocol:
def __init__(self, ell):

self.ell = ell # number of variables
self.field_size = 23 # example prime field

def f(self, x):
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# Example polynomial f(x1,x2,x3) = x1x2 + x2x3 + x3x1
# This would normally be unknown to verifier
return (x[0]*x[1] + x[1]*x[2] + x[2]*x[0]) % self.field_size

# Prover's side
def compute_true_sum(self):

# Compute actual sum over {0,1}^ell
result = 0
for bits in product([0,1], repeat=self.ell):

result = (result + self.f(bits)) % self.field_size
return result

def S1(self, x1):
# First round polynomial S1(x1)
result = 0
for bits in product([0,1], repeat=self.ell-1):

point = (x1,) + bits
result = (result + self.f(point)) % self.field_size

return result

# Verifier's side
def verify_round1(self, claimed_C, S1):

# Check C = S1(0) + S1(1)
if claimed_C != (S1(0) + S1(1)) % self.field_size:

return False

# Pick random r1
r1 = random.randrange(self.field_size)
return r1, S1(r1)

# Example usage
protocol = SumCheckProtocol(ell=3)

# Prover computes and sends C
C = protocol.compute_true_sum()
print(f"Claimed sum C: {C}")

# Prover sends S1
S1 = protocol.S1
print(f"S1(0): {S1(0)}, S1(1): {S1(1)}")

# Verifier checks
r1, S1_r1 = protocol.verify_round1(C, S1)
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print(f"Verifier picked r1={r1}, S1(r1)={S1_r1}")

Using sympy to understand the algebraic structure more clearly:

from sympy import symbols, expand, Poly
from itertools import product

class SymbolicSumCheck:
def __init__(self, ell=3):

self.ell = ell
# Create symbolic variables x1, x2, x3
self.vars = symbols(f'x1:{ell+1}')

def f(self, x):
# f(x1,x2,x3) = x1*x2 + x2*x3 + x3*x1
x1, x2, x3 = self.vars
return x1*x2 + x2*x3 + x3*x1

def compute_true_sum(self):
result = 0
# Sum over {0,1}^ell
for bits in product([0, 1], repeat=self.ell):

subs_dict = {self.vars[i]: bit for i, bit in enumerate(bits)}
result += self.f(bits).subs(subs_dict)

return result

def S1(self, x1_val):
x1 = self.vars[0]
result = 0
# Sum over remaining variables
for bits in product([0, 1], repeat=self.ell-1):

subs_dict = {self.vars[i+1]: bit for i, bit in
enumerate(bits)}↪→

# Keep x1 symbolic, substitute others
result += self.f(self.vars).subs(subs_dict)

# Convert to polynomial in x1
return Poly(expand(result), x1)

# Example usage
protocol = SymbolicSumCheck()
C = protocol.compute_true_sum()
print(f"C = {C}")
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S1 = protocol.S1(symbols('x1'))
print(f"S1 = {S1}")
print(f"S1(0) = {S1.eval(0)}")
print(f"S1(1) = {S1.eval(1)}")

This illustrates: 1. Prover computes true sum C 2. Prover sends polynomial S1 3.
Verifier checks C = S1(0) + S1(1) 4. Verifier picks random r1 5. Process continues (not
shown: subsequent rounds)

Zero-Knowledge Aspect:
By checking only at a random point, r1 the verifier does not gain knowledge of f They

are only checking the consistency of the claimed intermediate sum H1(x1) with the actual
value sent by the prover in the form of S1(x1)

Why This Works:
If the prover is honest, S1 will indeed equal H1 and this random check is likely to pass.

If the prover is dishonest, it is unlikely that S1 will match H1 at a random point, and
the verifier will catch the deception.

1.4.2 Sum-Check Protocol: Round 2

Next Rounds: The protocol continues for ℓ − 1 more rounds, reducing the sum one
dimension at a time, using similar random checks to maintain zero-knowledge.

Round 2: They recursively check that S1(r1) = H1(r1)
i.e. s1(r1) =

∑
b2∈{0,1} . . .

∑
bℓ∈{0,1} f(r1, b2, . . . , bℓ).

from sympy import symbols, expand, Poly
from itertools import product

class SymbolicSumCheckRounds:
def __init__(self, ell=3):

self.ell = ell
self.vars = symbols(f'x1:{ell+1}')
print(f"Initialized with {ell} variables: {self.vars}")

def f(self, x):
x1, x2, x3 = self.vars
return x1*x2 + x2*x3 + x3*x1

def compute_true_sum(self):
result = 0
print(f"\nComputing true sum over {2**self.ell} points:")
for bits in product([0, 1], repeat=self.ell):

subs_dict = {self.vars[i]: bit for i, bit in enumerate(bits)}
term = self.f(bits).subs(subs_dict)
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result += term
print(f" f{bits} = {term}")

print(f"True sum: {result}")
return result

def S1(self, x1):
print(f"\nComputing S1(x1):")
result = 0
for bits in product([0, 1], repeat=self.ell-1):

subs_dict = {self.vars[i+1]: bit for i, bit in
enumerate(bits)}↪→

term = self.f(self.vars).subs(subs_dict)
result += term
print(f" Term for {bits}: {term}")

poly = Poly(expand(result), x1)
print(f"S1(x1) = {poly}")
return poly

def S2(self, r1, x2):
print(f"\nComputing S2(x2) with r1 = {r1}:")
result = 0
for bits in product([0, 1], repeat=self.ell-2):

subs_dict = {self.vars[0]: r1, self.vars[1]: x2}
for i, bit in enumerate(bits):

subs_dict[self.vars[i+2]] = bit
term = self.f(self.vars).subs(subs_dict)
result += term
print(f" Term for {bits}: {term}")

poly = Poly(expand(result), x2)
print(f"S2(x2) = {poly}")
return poly

# Example usage
protocol = SymbolicSumCheckRounds()
C = protocol.compute_true_sum()
print(f"C = {C}")

# Round 1
S1 = protocol.S1(symbols('x1'))
print(f"S1(0) = {S1.eval(0)}")
print(f"S1(1) = {S1.eval(1)}")

# Verifier picks r1 = 2
r1 = 2

8



S1_at_r1 = S1.eval(r1)
print(f"S1({r1}) = {S1_at_r1}")

# Round 2
S2 = protocol.S2(r1, symbols('x2'))
print(f"S2(0) = {S2.eval(0)}")
print(f"S2(1) = {S2.eval(1)}")

if S1 ̸= H1 the probability V accepts is at most:
PrT1∈F [s1(r1) = H(r1)] + Prr2,...,rℓ∈F [V accepts|s1(r1) ̸= H(r1)]

≤ d
|F | +

d(ℓ−1)
|F | ≤ d

|F |

from sympy import symbols, expand, Poly
import random
from fractions import Fraction

class SumCheckProbability:
def __init__(self, d, field_size, ell):

"""
d: degree of polynomial
field_size: size of field F
ell: number of variables
"""
self.d = d
self.F = field_size
self.ell = ell

def simulate_verification(self, num_trials=1000):
"""Simulate the verification process and compute probabilities"""
print(f"\nSimulating with parameters:")
print(f"d = {self.d}, |F| = {self.F}, $\\ell$ = {self.ell}")

# Probability of $s_1(r_1) = H(r_1)$
prob_s1_equals_h = 1 - Fraction(self.d, self.F)
print(f"\nPr[$s_1(r_1) = H(r_1)$] $\\leq$ {prob_s1_equals_h}")

# Probability of accepting when $s_1(r_1) \neq H(r_1)$
prob_accept_given_different = Fraction(self.d * (self.ell - 1),

self.F)↪→

print(f"Pr[V accepts | $s_1(r_1) \\neq H(r_1)$] $\\leq$
{prob_accept_given_different}")↪→

# Total probability bound
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total_bound = Fraction(self.d, self.F) + Fraction(self.d *
(self.ell - 1), self.F)↪→

print(f"\nTotal probability bound: {total_bound}")

# Verify bound is $\leq d\ell/|F|$
theoretical_bound = Fraction(self.d * self.ell, self.F)
print(f"Theoretical bound ($d\\ell/|F|$): {theoretical_bound}")
print(f"Bound satisfied: {total_bound <= theoretical_bound}")

# Example usage
params = [

(2, 17, 3), # small field
(3, 101, 4), # medium field
(5, 257, 5) # larger field

]

for d, F, ell in params:
simulator = SumCheckProbability(d, F, ell)
simulator.simulate_verification()
print("\n" + "="*50)

def schwartz_zippel_bound(d, F):
"""Compute Schwartz-Zippel lemma bound"""
return Fraction(d, F)

# Additional verification
print("\nVerifying Schwartz-Zippel bounds:")
for d, F, _ in params:

bound = schwartz_zippel_bound(d, F)
print(f"d={d}, |F|={F}: Pr[error] $\\leq$ {bound}")

1.4.3 Round ℓ (Final Round)

• Prover (P) sends a univariate polynomial Sℓ(xℓ) claimed to equal Hℓ(xℓ) :=
f(r1, r2, ..., rℓ−1, xℓ)

• Verifier (V) checks that Sℓ(rℓ) = Sℓ(0) + Sℓ(1)

• V picks rℓ at random and needs to check that Sℓ(rℓ) = f(r1, ..., rℓ−1, rℓ)

• No need for more rounds. V can perform this check with one oracle query.

Explanation:
In the final round of the Sum-Check protocol:

10



1. The Prover’s Role: The prover has reduced the multidimensional sum to a single
variable xℓ by successively fixing the previous variables x1, x2, ..., xℓ−1 to random
values r1, r2, ..., rℓ−1 They send a polynomial Sℓ(xℓ) that is claimed to represent
the sum over the remaining variable.

2. The Verifier’s Role: The verifier checks if the prover’s final polynomial Sℓ is
consistent with the previous rounds. The first check ensures that the polynomial
is well-formed. Then, the verifier picks a random value rℓ for the final variable and
checks if the polynomial Sℓ(rℓ) is equal to the value of the original function f at
the point (r1, r2, ..., rℓ)

3. One Oracle Query: Crucially, the verifier can perform this final check with just
one query to the oracle. They no longer need to perform any other calculations
because the final polynomial Sℓ represents the entire sum.

4. Zero-Knowledge: This entire process ensures that the verifier only gains knowl-
edge about the final sum but nothing about the function f itself.

from sympy import symbols, expand, Poly
from itertools import product
import random

class FullSumCheckProtocol:
def __init__(self, ell=3):

self.ell = ell
self.vars = symbols(f'x1:{ell+1}')
print(f"Initialized with variables: {self.vars}")
self.random_points = [] # Store ri values

def f(self, x):
x1, x2, x3 = self.vars
return x1*x2 + x2*x3 + x3*x1

def compute_Si(self, i, prev_random_points):
"""
Compute Si for round i, given previous random points
i: current round (0 to ell)
prev_random_points: list of r1,...,r_{i-1}
"""
print(f"\nComputing S{i}({'C' if i==0 else f'x_{i}'}):")
result = 0

# Variables to sum over
variables_to_sum = self.ell if i == 0 else self.ell - i
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# Create substitution dictionary for fixed points
fixed_subs = {

self.vars[j]: r
for j, r in enumerate(prev_random_points)

}
print(f"Fixed points: {fixed_subs}")

# Sum over remaining variables
for bits in product([0, 1], repeat=variables_to_sum):

subs_dict = fixed_subs.copy()
# Add remaining variable assignments
for j, bit in enumerate(bits):

subs_dict[self.vars[j if i == 0 else i + j]] = bit

term = self.f(self.vars).subs(subs_dict)
result += term
print(f" Term for {bits}: {term}")

if i == 0:
print(f"C = {result}")
return result

else:
current_var = self.vars[i-1] # i starts from 1 for actual

rounds↪→

poly = Poly(expand(result), current_var)
print(f"S{i}({current_var}) = {poly}")
return poly

def verify_round(self, i, Si, ri):
"""Verify round i with random point ri"""
print(f"\nVerifying round {i}:")
print(f"Checking S{i}(0) + S{i}(1) = previous value")
sum_01 = Si.eval(0) + Si.eval(1)
print(f"S{i}(0) + S{i}(1) = {sum_01}")

# Evaluate at random point
Si_at_ri = Si.eval(ri)
print(f"S{i}({ri}) = {Si_at_ri}")
return Si_at_ri

# Example usage
protocol = FullSumCheckProtocol()
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# Initial sum
C = protocol.compute_Si(0, [])
print(f"\nInitial sum C = {C}")

# All rounds
random_points = []
for i in range(1, protocol.ell + 1):

# Compute Si
Si = protocol.compute_Si(i, random_points)

# Verifier picks random ri
ri = i + 1 # For demonstration, using i+1 as random point
random_points.append(ri)

# Verify this round
result = protocol.verify_round(i, Si, ri)

print(f"\nRound {i} complete. Random point r{i} = {ri}")
if i == protocol.ell:

print(f"Final round: Verifier makes oracle query
f({random_points}) = {result}")↪→

class CheatingProver(FullSumCheckProtocol):
def __init__(self, ell=3, cheat_probability=0.5):

super().__init__(ell)
self.cheat_probability = cheat_probability
print(f"Initialized Cheating Prover with cheat probability:

{self.cheat_probability}")↪→

def compute_Si(self, i, prev_random_points):
"""Compute Si, potentially cheating"""
honest_Si = super().compute_Si(i, prev_random_points)

if i == 0 or random.random() > self.cheat_probability:
print("Prover is honest this round.")
return honest_Si

print("Prover is cheating this round!")
if i == self.ell:

# In the final round, just return a different constant
return honest_Si + 1

# For earlier rounds, perturb the honest polynomial
x = self.vars[i-1]
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cheat_poly = honest_Si + x # Add a linear term to cheat
print(f"Cheating S{i}({x}) = {cheat_poly}")
return cheat_poly

class Verifier:
def __init__(self, prover):

self.prover = prover
self.previous_value = None

def run_protocol(self):
C = self.prover.compute_Si(0, [])
print(f"\nClaimed initial sum C = {C}")
self.previous_value = C

random_points = []
for i in range(1, self.prover.ell + 1):

Si = self.prover.compute_Si(i, random_points)
ri = random.randint(2, 10) # Random point, avoiding 0 and 1
random_points.append(ri)

if not self.verify_round(i, Si, ri):
print(f"Verification failed at round {i}!")
return False

print("All rounds verified successfully.")
return True

def verify_round(self, i, Si, ri):
print(f"\nVerifying round {i}:")
sum_01 = Si.eval(0) + Si.eval(1)
print(f"S{i}(0) + S{i}(1) = {sum_01}")
print(f"Previous value = {self.previous_value}")

if sum_01 != self.previous_value:
return False

Si_at_ri = Si.eval(ri)
print(f"S{i}({ri}) = {Si_at_ri}")
self.previous_value = Si_at_ri
return True

prover = CheatingProver(ell=3, cheat_probability=0.7)
verifier = Verifier(prover)
protocol_result = verifier.run_protocol()
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print(f"\nProtocol {'succeeded' if protocol_result else 'failed'}")

prover = CheatingProver(ell=3, cheat_probability=0.7)
verifier = Verifier(prover)
protocol_result = verifier.run_protocol()
print(f"\nProtocol {'succeeded' if protocol_result else 'failed'}")

Result:

Initialized with variables: (x1, x2, x3)

Computing S0(C):
Fixed points: {}

Term for (0, 0, 0): 0
Term for (0, 0, 1): 0
Term for (0, 1, 0): 0
Term for (0, 1, 1): 1
Term for (1, 0, 0): 0
Term for (1, 0, 1): 1
Term for (1, 1, 0): 1
Term for (1, 1, 1): 3

C = 6

Initial sum C = 6

Computing S1(x_1):
Fixed points: {}

Term for (0, 0): 0
Term for (0, 1): x1
Term for (1, 0): x1
Term for (1, 1): 2*x1 + 1

S1(x1) = Poly(4*x1 + 1, x1, domain='ZZ')

Verifying round 1:
Checking S1(0) + S1(1) = previous value
S1(0) + S1(1) = 6
S1(2) = 9

Round 1 complete. Random point r1 = 2

Computing S2(x_2):
Fixed points: {x1: 2}

Term for (0,): 2*x2
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Term for (1,): 3*x2 + 2
S2(x2) = Poly(5*x2 + 2, x2, domain='ZZ')

Verifying round 2:
Checking S2(0) + S2(1) = previous value
S2(0) + S2(1) = 9
S2(3) = 17

Round 2 complete. Random point r2 = 3

Computing S3(x_3):
Fixed points: {x1: 2, x2: 3}

Term for (): 5*x3 + 6
S3(x3) = Poly(5*x3 + 6, x3, domain='ZZ')

Verifying round 3:
Checking S3(0) + S3(1) = previous value
S3(0) + S3(1) = 17
S3(4) = 26

Round 3 complete. Random point r3 = 4
Final round: Verifier makes oracle query f([2, 3, 4]) = 26
Initialized with variables: (x1, x2, x3)
Initialized Cheating Prover with cheat probability: 0.7

Computing S0(C):
Fixed points: {}

Term for (0, 0, 0): 0
Term for (0, 0, 1): 0
Term for (0, 1, 0): 0
Term for (0, 1, 1): 1
Term for (1, 0, 0): 0
Term for (1, 0, 1): 1
Term for (1, 1, 0): 1
Term for (1, 1, 1): 3

C = 6
Prover is honest this round.

Claimed initial sum C = 6

Computing S1(x_1):
Fixed points: {}

Term for (0, 0): 0
Term for (0, 1): x1
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Term for (1, 0): x1
Term for (1, 1): 2*x1 + 1

S1(x1) = Poly(4*x1 + 1, x1, domain='ZZ')
Prover is cheating this round!
Cheating S1(x1) = Poly(5*x1 + 1, x1, domain='ZZ')

Verifying round 1:
S1(0) + S1(1) = 7
Previous value = 6
Verification failed at round 1!

Protocol failed
Initialized with variables: (x1, x2, x3)
Initialized Cheating Prover with cheat probability: 0.7

Computing S0(C):
Fixed points: {}

Term for (0, 0, 0): 0
Term for (0, 0, 1): 0
Term for (0, 1, 0): 0
Term for (0, 1, 1): 1
Term for (1, 0, 0): 0
Term for (1, 0, 1): 1
Term for (1, 1, 0): 1
Term for (1, 1, 1): 3

C = 6
Prover is honest this round.

Claimed initial sum C = 6

Computing S1(x_1):
Fixed points: {}

Term for (0, 0): 0
Term for (0, 1): x1
Term for (1, 0): x1
Term for (1, 1): 2*x1 + 1

S1(x1) = Poly(4*x1 + 1, x1, domain='ZZ')
Prover is cheating this round!
Cheating S1(x1) = Poly(5*x1 + 1, x1, domain='ZZ')

Verifying round 1:
S1(0) + S1(1) = 7
Previous value = 6
Verification failed at round 1!
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Protocol failed

1.5 IP=PSPACE

• #SAT is a #P-complete problem: This means that any problem in the com-
plexity class #P (counting problems) can be reduced to #SAT in polynomial time.

#P-complete and NP-complete are different:

NP-complete: - Decision problems ("Is there a solution?") - Example: SAT asks
"Is this boolean formula satisfiable?" - Answer is YES/NO

#P-complete: - Counting problems ("How many solutions?") - Example: #SAT
asks "How many satisfying assignments are there?" - Answer is a number

Example to illustrate:

def SAT(formula): # NP-complete
# Returns True if formula has ANY satisfying assignment
return any(is_satisfying(assignment) for assignment in

all_possible())↪→

def sharp_SAT(formula): # #P-complete (NOT hash_SAT)
# Returns COUNT of ALL satisfying assignments
return sum(1 for assignment in all_possible() if

is_satisfying(assignment))↪→

# For formula: (x1 OR x2)
formula = "(x1 OR x2)"
print(f"SAT: {SAT(formula)}") # True: solution exists
print(f"#SAT: {sharp_SAT(formula)}") # 3: counts (1,0), (0,1),

(1,1)↪→

# Another example:
def satisfying_assignments(formula):

return [(1,0), (0,1), (1,1)] # for (x1 OR x2)

print(f"SAT just needs one: {satisfying_assignments(formula)[0]}")
print(f"#SAT counts all: {len(satisfying_assignments(formula))}")

#P-complete problems are generally harder than NP-complete problems because
they require counting ALL solutions rather than just finding ONE.

• The protocol we just saw implies every problem in #P has an interactive
proof with a polynomial-time verifier: The protocol refers to the Sum-Check
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protocol. Because #SAT is #P-complete, and the Sum-Check protocol can handle
#SAT with a polynomial-time verifier, this implies that any problem in #P can
be solved with an interactive proof (using the same protocol and a reduction from
the problem to #SAT).

#SAT is #P-complete for two key reasons:

1. #SAT is in #P:

def verify_SAT_solution(formula, assignment):
# Polynomial-time verification
return formula.evaluate(assignment)

def count_solutions(formula): # in #P
# Non-deterministic counting
return sum(1 for assignment in all_possible_assignments

if verify_SAT_solution(formula, assignment))

2. Every #P problem reduces to #SAT:

– Any counting problem in #P can be transformed to counting SAT solu-
tions

– Example: counting valid graph colorings → #SAT

def reduce_graph_coloring_to_SAT(graph):
# Transform graph coloring instance to SAT formula
# Such that:
# number of valid colorings = number of satisfying

assignments↪→

variables = create_variables_for_vertices()
clauses = create_coloring_constraints()
return SAT_formula(variables, clauses)

This combination of being in #P (membership) and having all #P problems re-
ducible to it (hardness) makes #SAT #P-complete.

Note:

Here’s a more detailed implementation showing how SAT formulas work:

class SAT_Formula:
def __init__(self):

self.variables = []
self.clauses = []
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def add_variable(self, name):
self.variables.append(name)
return len(self.variables) - 1 # return variable index

def add_clause(self, literals):
# literal: (var_index, is_positive)
self.clauses.append(literals)

def reduce_graph_coloring_to_SAT(graph, colors=3):
"""
Transform k-coloring problem to SAT
graph: {vertex: [neighbors]}
colors: number of colors (typically 3)
"""
formula = SAT_Formula()

# 1. Create variables for each vertex-color pair
# x_{v,c} means "vertex v has color c"
color_vars = {}
for v in graph:

color_vars[v] = []
for c in range(colors):

var_idx = formula.add_variable(f"x_{v}_{c}")
color_vars[v].append(var_idx)

# 2. Each vertex must have at least one color
for v in graph:

formula.add_clause([(var, True) for var in color_vars[v]])

# 3. No vertex can have two colors
for v in graph:

for c1 in range(colors):
for c2 in range(c1+1, colors):

formula.add_clause([
(color_vars[v][c1], False),
(color_vars[v][c2], False)

])

# 4. Adjacent vertices must have different colors
for v1 in graph:

for v2 in graph[v1]: # neighbors
for c in range(colors):

formula.add_clause([
(color_vars[v1][c], False),
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(color_vars[v2][c], False)
])

return formula

# Example usage
graph = {

0: [1, 2],
1: [0, 2],
2: [0, 1]

}

formula = reduce_graph_coloring_to_SAT(graph)
print(f"Variables: {formula.variables}")
print(f"Clauses: {formula.clauses}")

def count_satisfying_assignments(formula):
"""Count solutions (this is #SAT)"""
count = 0
for assignment in product([0,1], repeat=len(formula.variables)):

if is_satisfying(formula, assignment):
count += 1

return count

This shows: 1. How to encode graph coloring as SAT 2. The structure of SAT
formulas (variables and clauses) 3. Why counting solutions (#SAT) is harder than
finding one (SAT) 4. Why any #P problem can reduce to #SAT (through similar
encodings)

The #P-completeness comes from: - Any counting problem can be encoded this
way - The counting preserves the number of solutions - The reduction is polynomial-
time

To further show NP-complete vs #P-complete problems:

A problem A is NP-complete if the following conditions hold:

1. A ∈ NP : Problem A is in the class NP (Nondeterministic Polynomial time).
This means there exists a nondeterministic Turing machine that can verify a
solution to A in polynomial time.

2. SAT ≤p A: SAT (Boolean Satisfiability) can be reduced to A in polynomial
time. This means there is a polynomial-time algorithm that transforms any
instance of SAT into an instance of A, such that the solution to the SAT
instance can be obtained from the solution to the A instance.

3. A ≤p SAT : A can be reduced to SAT in polynomial time. This means there
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is a polynomial-time algorithm that transforms any instance of A into an
instance of SAT.

In simpler terms:

– NP: Problems where you can quickly check if a given solution is correct (but
finding the solution might be hard).

– SAT: The classic NP-complete problem, determining if a Boolean formula has
a satisfying assignment.

– Reduction (≤p): Transforming one problem into another in a way that
preserves the solution (in polynomial time).

NP-Completeness Implications:

If a problem is NP-complete, it means:

– Hardness: The problem is at least as hard as SAT.

– Universality: Any other problem in NP can be reduced to this problem.

Therefore, finding efficient algorithms (polynomial-time) for NP-complete problems
would imply that all problems in NP can be solved efficiently. However, this remains
an open question in computer science.

def is_SAT(formula):
return any(is_satisfying(assignment) for assignment)

def solve_NP_problem(problem):
sat_formula = convert_to_SAT(problem) # polynomial-time

reduction↪→

return is_SAT(sat_formula)

#P-complete: Similarly, problem A is #P-complete if:

1. A ∈ #P

2. #SAT ≤p A (#SAT reduces to A)

3. A ≤p #SAT (A reduces to #SAT)

def count_SAT(formula):
return sum(1 for assignment if is_satisfying(assignment))

def solve_sharp_P_problem(problem):
sat_formula = convert_to_SAT(problem) # polynomial-time

reduction↪→

return count_SAT(sat_formula) # counts ALL solutions
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Key difference: NP is about finding ONE solution, #P is about counting ALL
solutions.

• It is not much harder to show that this in fact holds for every problem
in PSPACE [LFKN, Shamir]: The result, known as IP=PSPACE, states that
the class of problems solvable by interactive proofs (IP) is equivalent to the class
of problems solvable in polynomial space (PSPACE).

In simpler terms:

• #P problems are those that ask "How many solutions are there?"

• Interactive proofs are like "conversations" between a prover and a verifier to deter-
mine a truth.

• PSPACE refers to problems that can be solved using a polynomial amount of
memory (space), regardless of time:

Definition: A problem is in PSPACE if it can be solved by a Turing machine using
O(nk) space, where: - n is input size - k is some constant - Space means memory
used

Example in Python:

def PSPACE_example(n):
# Space complexity: O(n)
# Time complexity: Could be exponential!
def recursive_solve(depth, space):

if depth == n:
return check_solution(space)

# Only uses polynomial space
# But might take exponential time to try all possibilities
for choice in possible_choices:

space[depth] = choice
if recursive_solve(depth + 1, space):

return True
return False

# Only uses n cells of memory
space = [0] * n
return recursive_solve(0, space)

Key properties:

– PSPACE includes NP and coNP
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– PSPACE = NPSPACE (Savitch’s Theorem)

– Problems in PSPACE can be very hard to solve (time-wise) but need only
polynomial memory

1.6 Double-Efficient Interactive Proof for Counting Triangles

• Input: A ∈ {0, 1}n×n representing the adjacency matrix of a graph.

• Desired Output:
1

6
·

∑
(i,j,k)∈{n}3

AijAjkAik

import numpy as np

def count_triangles(A):
"""
A: adjacency matrix where
A[i][j] = 1 if edge exists between vertices i and j
A[i][j] = 0 if no edge exists
"""
n = len(A)
count = 0

# This implements $\sum_{(i,j,k)\in[n]^3} (A_{ij} * A_{jk} *
A_{ik})$↪→

for i in range(n):
for j in range(n):

for k in range(n):
# A_ij: edge from i to j exists?
# A_jk: edge from j to k exists?
# A_ik: edge from i to k exists?
triangle = A[i][j] * A[j][k] * A[i][k]
count += triangle

# Divide by 6 because each triangle is counted 6 times
return count // 6

# Example
graph = np.array([

[0, 1, 1], # vertex 0 connected to 1 and 2
[1, 0, 1], # vertex 1 connected to 0 and 2
[1, 1, 0] # vertex 2 connected to 0 and 1

])
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print(f"Number of triangles: {count_triangles(graph)}") # Should
print 1↪→

Explanation: - A_ij is A[i][j]: indicates if edge (i,j) exists - A_jk is A[j][k]:
indicates if edge (j,k) exists - A_ik is A[i][k]: indicates if edge (i,k) exists - When
all three are 1, we’ve found a triangle - Divide by 6 because each triangle is counted
in all possible permutations (3! = 6)

• Fastest known algorithm: Runs in matrix multiplication time, currently about
O(n2.37)

This suggests that an interactive proof system could offer a more efficient way to verify
the count of triangles in a graph, potentially achieving a faster runtime than traditional
algorithms.

1.7 A Better Doubly-Efficient Interactive Proof for Counting Triangles

1. Counting Triangles

• Input: A ∈ {0, 1}n×n representing the adjacency matrix of a graph.

• Desired Output: 1
6 ·

∑
(i,j,k)∈{n}3 AijAjkAik

• View A and A2 as functions mapping {0, 1}logn × {0, 1}logn to F:

2. Defining the Polynomial

• Define the polynomial:

h(X,Y ) = (̃A2)(X,Y ) Ã(X,Y )

3. The Protocol

a) Apply the sum-check protocol to h

b) At the end of the protocol, V needs to evaluate: h(r1, r2) = (̃A2)(r1, r2) Ã(r1, r2)

c) V can evaluate Ã(r1, r2) on its own in O(n2) time.

d) V uses the MatMult protocol to force P to compute (̃A2)(r1, r2) for
her.

from sympy import symbols, expand, Poly
import numpy as np
from itertools import product

class TriangleCountingProtocol:
def __init__(self, n):
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self.n = n
# Create symbolic variables
self.X, self.Y = symbols('X Y')

def setup_adjacency(self, edges):
"""Setup adjacency matrix A"""
self.A = np.zeros((self.n, self.n))
for i, j in edges:

self.A[i][j] = self.A[j][i] = 1

def compute_A_squared(self):
"""Compute A^2"""
return np.matmul(self.A, self.A)

def MLE_A(self, x, y):
"""
Multilinear extension of A
$\\tilde{A}(x,y)$ - extension of adjacency matrix
"""
result = 0
for i, j in product(range(self.n), repeat=2):

if self.A[i][j] == 1:
term = 1
# Create multilinear term for each 1 in matrix
for bit, var in zip(format(i,

f'0{self.n.bit_length()}b'), [x]):↪→

term *= var if bit == '1' else (1-var)
for bit, var in zip(format(j,

f'0{self.n.bit_length()}b'), [y]):↪→

term *= var if bit == '1' else (1-var)
result += term

return result

def MLE_A_squared(self, x, y):
"""
Multilinear extension of A^2
$\\tilde{A}^2(x,y)$ - extension of A^2
"""
A_squared = self.compute_A_squared()
result = 0
for i, j in product(range(self.n), repeat=2):

if A_squared[i][j] != 0:
term = A_squared[i][j]
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for bit, var in zip(format(i,
f'0{self.n.bit_length()}b'), [x]):↪→

term *= var if bit == '1' else (1-var)
for bit, var in zip(format(j,

f'0{self.n.bit_length()}b'), [y]):↪→

term *= var if bit == '1' else (1-var)
result += term

return result

def h(self, x, y):
"""
h(X,Y) = $\\tilde{A}^2(X,Y)\\cdot\\tilde{A}(X,Y)$
"""
return self.MLE_A_squared(x, y) * self.MLE_A(x, y)

def verify(self, r1, r2):
"""Verifier's check at random points r1, r2"""
A_val = self.MLE_A(r1, r2)
A_squared_val = self.MLE_A_squared(r1, r2)
h_val = A_val * A_squared_val
print(f"$\\tilde{{A}}({r1},{r2}) = {A_val}$")
print(f"$\\tilde{{A}}^2({r1},{r2}) = {A_squared_val}$")
print(f"h({r1},{r2}) = {h_val}")
return h_val

# Example usage
protocol = TriangleCountingProtocol(n=3)
# Example graph with one triangle
edges = [(0,1), (1,2), (0,2)]
protocol.setup_adjacency(edges)

print("Adjacency matrix:")
print(protocol.A)
print("\nA^2:")
print(protocol.compute_A_squared())

# Verifier picks random points
r1, r2 = 0.5, 0.5
result = protocol.verify(r1, r2)
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